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Abstract

It has been argued that much of evolution takes place in the
absence of fitness gradients. Such periods of evolution can
be analysed by examining the mutational network formed by
sequences of equal fitness, that is, the neutral network. It
has been demonstrated that, in large populations under a high
mutation rate, the population distribution over the neutral
network and average mutational robustness are given by the
principal eigenvector and eigenvalue, respectively, of the net-
work’s adjacency matrix. However, little progress has been
made towards understanding the manner in which the topol-
ogy of the neutral network influences the resulting popula-
tion distribution and robustness. In this work, we use nu-
merical methods and network models to enhance our under-
standing of how populations distribute themselves over neu-
tral networks. We demonstrate that, in the presence of certain
topological features, the population will undergo an explo-
ration catastrophe and become confined to a small portion of
the network. These results provide insight into the behaviour
of populations on neutral networks, demonstrating that neu-
trality does not necessarily lead to an exploration of geno-
type/phenotype space or an associated increase in population
diversity.

Introduction
When an entity undergoes evolutionary change, much of
this change may not be due to a response to selective pres-
sure, but rather due to the discovery of variants with equiv-
alent fitness. It has been argued that the majority of genetic
change in natural organisms is due to such neutral mutations
(Kimura, 1983). In Evolutionary Computing (EC) (Eiben
and Smith, 2015), it has been found that many fitness func-
tions result in a substantial proportion of mutations being
neutral (Galván-López et al., 2011).

A variety of authors have demonstrated the substantial im-
pact of neutrality on evolutionary dynamics (Koelle et al.,
2006; Van Nimwegen et al., 1999; Newman and Engelhardt,
1998). Much of this analysis has focused on how, in in-
stances where no advantageous mutations exist, neutrality
prevents the population from getting stuck at a certain point
in sequence space. Instead, it can explore the neutral net-
work until it finds an advantageous phenotype lying adja-
cent to the network (Fontana and Schuster, 1998; Gavrilets,

1997). Moreover, it has been demonstrated that larger neu-
tral networks allow for more such “stepping off points”
(Wagner, 2008), facilitating the discovery of adaptive and
innovative phenotypes. It has further been shown that large
neutral networks allow the population to spread out and gain
standing variation. This facilitates the population’s adaptive
response to changes in its environment (Masel and Trotter,
2010). However, there is some ambiguity as to whether neu-
trality is universally beneficial to evolution (Cuevas et al.,
2009; Elena and Sanjuán, 2008; Galván-López et al., 2011).

The seminal work in the modeling of evolutionary dynam-
ics is that of Erik van Nimwegen, James P. Crutchfield and
Martijn Huynen (1999). By employing a straightforward
model of neutral evolution, the authors demonstrated the ex-
istence of two distinct behavioural regimes. If Mµ � 1,
where M is the population size and µ is the per genome
mutation rate, then the population is monomorphic (Bloom
et al., 2007). Mutations either fix or go extinct, that is they
either become present in the entire population or disappear
from it completely. Conversely, if Mµ � 1, then the popu-
lation is polymorphic and mutations do not fix. The popula-
tion distributes itself over a number of nodes in the network.
More specifically, the population’s distribution is given by
the network’s principal eigenvector and its average robust-
ness (number of neutral neighbours) is given by the net-
work’s principal eigenvalue. Random walks are a very well
described phenomenon (Lovász, 1993), and so this work
focuses exclusively on the, more interesting, polymorphic
case.

As closed-form solutions to the eigenvalues and eigen-
vectors of graphs do not exist, these are somewhat opaque
quantities. However, various authors have been able to draw
some conclusions from this result. Firstly, the population
spreads out, or diffuses, over the neutral network, gain-
ing variation (Manrubia and Cuesta, 2010; Crutchfield and
Schuster, 2003; Hu et al., 2011; Masel and Trotter, 2010).
Secondly, the population will become more concentrated
on the “most connected” nodes and, in so doing, increase
the average robustness of the population (van Nimwegen,
2006; Van Nimwegen et al., 1999; Banzhaf and Leier, 2006).



These conclusions are well founded, as the average degree
of a network is a lower bound on the principal eigenvalue
(Cioabă et al., 2010) and the principal eigenvector is a mea-
sure of centrality in a network, the eigenvector centrality
(Bonacich, 1972), and, as such, assigns a non-zero centrality
score to each node.

In this paper, we numerically explore instances which
demonstrate that this description of the behaviour of poly-
morphic populations can be refined. Although the average
population robustness will always be higher than the net-
work’s average degree, we can construct examples where
the population concentrates on a region of the network
which does not agree with our intuition of “most connected”.
Moreover, networks can be constructed where the popula-
tion concentrates on a small number of vertices and does not
spread out, or diffuse, over it. Take, for instance, the two
networks shown in figure 1. Both of these networks consist
of an Erdős-Renyi network (Erdős and Renyi, 1959) with
400 vertices and 1200 edges connected to a hub (star net-
work), where the connection to the hub is made via one of
its peripheral vertices. In the first network, the hub is of de-
gree 45 and in the second it is of degree 70. Despite the
similarity of these two networks, the equilibrium distribu-
tion of the population over them is vastly different. In the
first network, the population behaves roughly as we would
expect and distributes itself fairly evenly over the network,
being more concentrated on the more central nodes of the
Erdős-Renyi component. It is worth noting that only a very
small proportion of the population (around 0.5%) is found
on the hub or its neighbours. However, in the second net-
work, around 99.5% of the population is concentrated on
the hub and its neighbours. This behaviour is observed re-
gardless of the size of the Erdős-Renyi component, so long
as the average degree of this component is kept constant.

The principal eigenvectors and eigenvalues of graphs are
of great importance to a variety of problems (Restrepo
et al., 2007), principally synchronization phenomena and the
spread of epidemics. Since the publication of van Nimwe-
gen et. al.’s work, there has been substantial progress in
approximating these quantities in terms of network proper-
ties (Goltsev et al., 2012). In this work, we build on these
results in order to incorporate the above observations and in-
tuitions into a more complete understanding of the evolution
of polymorphic populations on neutral networks.

Ancel and Fontana (2000) demonstrated that, for evolving
populations of RNA sequences with plastogentic congru-
ence, the population could undergo an exploration catastro-
phe, whereby it would be confined to a small portion of the
neutral network. It has recently been demonstrated (Martin
et al., 2014) that the principal eigenvector is a poor measure
of centrality in networks. This is due to the fact that certain
structural heterogeneities can cause the eigenvector to local-
ize on certain portions of the network, assigning almost all
of its weight to these portions and very little to the rest. We

make the argument here that this localisation phenomenon
has important implications for the neutral evolution of asex-
ual populations at high mutation rates. Specifically, in neu-
tral networks with certain topological features, the popu-
lation will undergo an exploration catastrophe. Moreover,
this phenomenon will occur without the presence of special
properties of the genotypes or phenotypes, such as plastoge-
netic congruence, and occurs independent of mutation rate.
We use computational methods to confirm that this local-
isation of the eigenvector occurs in biologically plausible
neutral networks. We further demonstrate novel modes of
eigenvector localisation not yet explored in the literature.

Localisation
In the context of graph spectra, localization refers to the
phenomenon whereby the normalisation weight of an eigen-
vector (

∑
f2i (λ), where λ is the eigenvalue and f(λ) is the

eigenvector) is concentrated on a small number of nodes that
does not scale with the size of the network (Pastor-Satorras
and Castellano, 2016). Some authors have suggested using
the inverse participation ratio Y (λ).

Y (λ) =

N∑
i=1

f4i (λ) (1)

as a quantitative measure of localization where, in this case,
f(λ) is the normalised eigenvector. If, in the limit N →∞,
Y (λ) ∼ 1 then the state is localized. On the other hand, if
Y (λ)→ 0 then the state is delocalized.

Results relating aspects of network topology to localiza-
tion have been derived by Chung et al. (2003), Goltsev et al.
(2012) and Martin et al. (2014). The result of Goltsev et al.
(2012) applies to scale-free networks, whereas the result of
Martin et al. (2014) applies to hubs connected to Erdős-
Renyi networks (Erdős and Renyi, 1959). On the other hand,
the result derived by Chung et al. (2003) is more general and
applies to any network model characterised by a degree dis-
tribution. However, this result is not tight. It can only con-
firm localisation in the case of extremely high-degree hubs
and, similarly, can only preclude localisation in the case of
networks with a very homogeneous degree-distribution. For
these reasons, the study of localisation in networks that are
not scale-free, or hubs connected to Erdős-Renyi networks,
must be done numerically.

Pastor-Satorras and Castellano (2016) demonstrated a dif-
ferent form of localisation which does not result in the con-
centration of the eigenvector on a hub. Instead, the eigen-
vector localises on the maximum K-core.

Definition of Localisation
As mentioned by Pastor-Satorras and Castellano (2016),
there does not exist a non-arbitrary definition for localisa-
tion of the eigenvector in single network instances. How-
ever, for the purposes of this paper it will be useful to define



(a) Hub of degree 45. (b) Hub of degree 70.

Figure 1: A localisation transition. A hub (star network) is connected to an Erdős-Renyi network by adding an edge between
one of the star’s peripheral nodes and a random node of the Erdős-Renyi network. The original Erdős-Renyi networks contained
400 vertices and 1200 edges. Node sizes are proportional to the corresponding component of the principal eigenvector of the
adjacency matrix which is equal to the proportion of the population found on the node.

some threshold separating localised and delocalised popu-
lation distributions. We define two such thresholds and use
them in different instances.

Localisation is somewhat easy to define in the case that
the population has concentrated around a single hub. Here,
we choose to say that if 90% or more of the population is
distributed on the hub and its immediate neighbours, then
the population is localised.

Trying to describe a population that is highly concen-
trated, but not on a hub, is slightly more challenging. Given
that localisation for classes of networks is defined in terms
of the inverse participation ratio, this would be natural met-
ric with which to define localisation. However, as Pastor-
Satorras and Castellano (2016) point out, in the delocalised
case we expect the inverse participation ratio to be propor-
tional to N−1. On the other hand, in the localised case, we
expect it to be proportional to N−β , where β < 1. This
dependence on the network size N , is unfortunate for our
purposes, as we desire a single threshold which applies to
networks of all sizes.

In order to reduce the impact of the network sizeN on our
threshold, we define the relative inverse participation ratio.
This is, simply, the ratio of the inverse participation ratio of
the network’s principal eigenvector to what the inverse par-
ticipation ratio would be if the eigenvector was distributed
uniformly over the network’s nodes. If the eigenvector is
distributed uniformly, then the inverse participation ratio is
1/N . This implies that the relative inverse participation ratio
can be easily calculated by multiplying the inverse participa-
tion ratio by N .

We choose to define localisation as occurring when the
relative inverse participation ratio is greater than 30. In pre-
liminary testing it was found that this value corresponded
with the authors’ intuition of localisation. For compari-
son, Pastor-Satorras and Castellano (2016) reported on a
number of real-world networks exhibiting localisation. The

lowest relative inverse participation ratio of these networks
was 46.7 (The HEP network, table 1 of (Pastor-Satorras
and Castellano, 2016)). The choice of 30 is fairly arbitrary.
However, were a higher value used, networks with a relative
inverse participation ratio higher than 30 but lower than this
other value would still be exhibiting a similar phenomenon
to those networks above this higher threshold. It is only the
intensity of this phenomenon which would be slightly di-
minished. Moreover, in the authors’ preliminary work, it
was found that principal eigenvectors with inverse partici-
pation ratios higher than 30 were very substantially more
concentrated than the principal eigenvectors of, say, Erdős-
Renyi networks (Erdős and Renyi, 1959).

Network Models
All analysis was conducted using the Python package
igraph (Csardi and Nepusz, 2006). The calculation of the
eigenvalues and eigenvectors of the adjacency matrices of
graphs in igraph is performed using the FORTRAN 77
package ARPACK (Lehoucq et al., 1998). ARPACK imple-
ments the implicitly restarted Arnoldi method (Lehoucq and
Sorensen, 1996) to find the eigenvalues and eigenvectors of
matrices. igraph’s default parameters for ARPACK were
used.

Barábasi-Albert Preferential Attachment
A focus of this work is the investigation of the population be-
haviour on around hubs. As such, it is valuable to interrogate
the population distribution in network models which natu-
rally contain hubs, and which might contain multiple hubs
connected to one another. Scale-free networks (Barabási,
2016) contain multiple hub nodes. These are networks with
a power-law degree distribution, that is p(k) ∼ k−γ for
some value of the parameter γ (usually, 2 ≤ γ ≤ 3).

The popular Barábasi-Albert preferential attachment
model (Barabási, 2016) generates connected networks



(a) α = 0 (b) α = 1 (c) α = 2

Figure 2: Barábasi-Albert preferential attachment networks with N = 200 nodes, and three different values of the attachment
parameter α. The node size is proportional to the proportion of the population that is located on it. The layout was determined
by the Fruchterman-Reingold force directed layout (Fruchterman and Reingold, 1991).

(a) Population average robustness (princi-
pal eigenvalue) (b) Inverse participation ratio (c) Proportion of the population on the hub

and its neighbours

Figure 3: The average population average robustness, the inverse participation ratio, and the proportion of population on the hub
node and its neighbours in Barábasi-Albert preferential attachment networks. The shaded region shows the standard deviation.

which have a power-law degree distribution, although it
does not uniformly sample the space of scale-free networks.
Moreover, this algorithm is able to generate networks which
contain hubs, but have degree distributions steeper or shal-
lower than a power-law.

Figure 2 shows diagrams of networks generated according
to this model for the three values of α = [0, 1, 2].

In order to examine localisation in this network model,
1000 networks were generated withN = 5000 nodes for the
values α = [0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0].
Figure 3 plots the principal eigenvalue, inverse participation
ratio and the proportion of the population on the maximum
degree node (hub) and its neighbours. We find that the pop-
ulation is highly localised for α > 1.2.

Poorly Connected Random Subgraphs of
Hypercubes

The realisable topology of neutral networks is constrained
by the fact that the genotypes are encoded by strings of char-
acters and that edges can only be placed between vertices
whose corresponding genotypes differ by a single character.
That is, are a hamming distance of one apart. Here, we anal-
yse how this constraint influences the neutral evolution of
populations. In particular, we are interested in the types of
localization behaviour which can be observed.

Random subgraphs of hypercubes (or n-cubes) are well
studied Reidys et al. (1997); Reidys (2009). In these mod-
els, neutral networks are created by including each node in

the neutral network with a probability θ (the symbol λ is
usually used for this probability, however, we use θ to avoid
confusion with the principal eigenvalue, which we denote
with λ1). Once the nodes have been assigned as being on
or off the network, the connected components of the neutral
network can be extracted. In the following, we study only
the largest connected component of the networks, as we are
interested in the exploratory behaviour of population on net-
works which extend over large parts of sequence space.

We hypothesize that, for sufficiently low θ, the con-
nectivity of the network will be low enough that the
population will be confined to areas of it, rather than
spread evenly. In order to test this hypothesis, we gen-
erated random subgraphs of the hypercube formed by us-
ing strings of length L = 6 over an alphabet consisting of
A = 4 distinct characters. The values of θ from the set
[0.1, 0.15, 0.2, 0.25, 0.3, 0.4] were used. Fewer larger val-
ues were chosen as preliminary experiments showed that, for
large values of θ, the resulting networks were substantially
larger, making analysis computationally expensive. Further-
more, figure 4 shows that the behaviour of the population is
less interesting for larger values of θ. For each value of θ,
100 networks were instantiated. Various properties relating
to the principal eigenvalue and eigenvector were measured.
These properties are plotted in figure 4. Figure 5 shows di-
agrams of representative networks, with the population dis-
tribution displayed through vertex size and colour.

Figure 5 demonstrates that, at least for the selected repre-



(a) No Hamming Ball (b) Hamming ball connected.

Figure 4: Relative inverse participation ratio (Yr (λ)) of the principal eigenvector over the largest connected component of
random subgraphs of an n-cube. For figure b, a hamming ball of radius ρ has been connected.

(a) θ = 0.1 (b) θ = 0.15 (c) θ = 0.2 (d) θ = 0.25

Figure 5: Network diagrams of the largest connected component of random subgraphs of an n-cube. The size of the nodes is
proportional to the proportion of the principal eigenvector which is located on them.

sentative networks, the population is highly concentrated on
a small number of nodes for small values of θ. However, for
larger values of θ it is distributed over a substantially larger
number of nodes. This behaviour can be observed in figure
4a, where we see that the relative inverse participation ratio
Yr (λ) is high enough to justify localization for low values of
θ. However, it drops rapidly for increasing values of θ. It is
interesting to note that Yr (λ) increases between θ = 0.1 and
θ = 0.15. Further investigation revealed that the networks
produced for θ = 0.1 were very small (this can be observed
in figue 5). We suspect that the small size of the networks
prevents Yr (λ) from being very large, as their small size
prevents the population from concentrating on a very small
fraction of the network.

We also wanted to interrogate whether this mode of local-
isation is dissimilar from localization on a K-core (Pastor-
Satorras and Castellano, 2016). In order to do this, we gen-
erated a further 20 networks each for θ = 0.15 and θ = 0.2
and recorded the proportion of the population residing on the
maximum K-core. For θ = 0.15 this value varied between
0.16 and 0.54, with a mean of 0.35 and a standard devia-
tion of 0.12. For θ = 0.2 it varied between 0.01 and 0.88,
with a mean of 0.7 and a standard deviation of 0.23. The
existence of networks in which the eigenvector is so weakly
concentrated on the maximum K-core indicates that, at least
in some cases, the mode of localization is slightly different
to that described by Pastor-Satorras and Castellano (2016).

We were interested as to whether weak connectivity be-
tween parts of the network would have a similar effect on

the eigenvectors of graphs that are not embedded in ham-
ming space. To this end, we generated pairs of Erdős-Renyi
(Erdős and Renyi, 1959) networks, each with |V | = 100
vertices and |E| = 200 edges. These pairs of networks were
connected by a single edge, connecting two randomly cho-
sen vertices. Although, in some instances, the eigenvector
was spread out evenly over the two original networks, in
others, it was almost completely concentrated on a single
network. Figure 6 shows a diagram of an instance where
the eigenvector was heavily concentrated on a single net-
work in the pair. Further analysis showed that, when anal-
ysed independently (without the single connecting edge), the
one network had a slightly higher principal eigenvalue than
the other, due to the randomness involved in the generation
of the networks. The eigenvector of the combined network
was concentrated on this network. This effect makes sense
in terms of natural evolution, as the population is able to
achieve a higher level of robustness on one of the pair of net-
works. Therefore, were a fraction of the population to be lo-
cated on the sub-network with a lower principal eigenvalue,
it would be out-competed by the fraction of the population
located on the other sub-network. Moreover, the single con-
necting edge is insufficient to allow a large flow of mutants
from the one sub-network to the other.

Hamming Balls on Random Subgraphs of
Hypercubes

It is worthwhile querying whether the eigenvectors of ran-
dom subgraphs of a hypercube can undergo a localization



Figure 6: Network formed by connecting two Erdős-Renyi
(Erdős and Renyi, 1959) networks, each with |V | = 100
vertices and |E| = 200 edges by a single edge. The size of
the nodes is proportional to the proportion of the principal
eigenvector which is located on them.

onto a hub, as already discussed for networks in general.
Of the analytic results for localization discussed earlier, the
weakest was that of Martin et al. (2014), where it was re-
quired that

√
kmax > 〈q〉, where 〈q〉 is the average degree

of the network excluding the hub. For random subgraphs
of the hupercube constructed from sequences of length L
and an alphabet of size A, where a given vertex is in-
cluded in the network with probability θ, if we connect a
hub of maximum possible degree then this condition implies
θ < 1/

√
L(A− 1). For the networks which we studied in

the previous section, with L = 6 and A = 4, this would
imply that θ < 0.24. In that section we found that, for that
value of θ, the eigenvector was already somewhat localized
(see figure 4a). Moreover, given that increasingL andAwill
decrease the bound on θ, similar effects are probable for the
random subgraphs of larger hypercubes. As the eigenvectors
of these networks are already under the influence of a certain
mode of localisation, studying the effects of connecting hubs
to them could lead to ambiguous results due to the multiple
modes of localisation.

There is, however, a natural generalisation to a hub when
considering subgraphs of hypercubes: the hamming ball. A
hamming ball is the network composed of all nodes in the
hypercube within a certain radius ρ of a specific sequence.
A star of maximum possible degree in the hypercube is then
a hamming ball of radius ρ = 1. We would expect hamming
balls to produce populations with high average genetic ro-
bustness. Bornberg-Bauer and Chan (1999) studied them as
an abstraction for the structure of protein neutral networks.
They found that the population tended to concentrate on the
inner nodes of the ball, increasing the population’s average
robustness. More recently, Bollobás et al. (2016) showed
that, for a given number of nodes, a hamming ball arrange-
ment maximised the principal eigenvalue of the resulting
network.

We, therefore, thought it worthwhile to investigate
whether, by connecting hamming balls to otherwise delo-
calised graphs, localisation could occur.

We generated random subgraphs of the hypercube formed
by strings of alphabet size A = 2 and length L = 13. The
smaller alphabet size was chosen as, in preliminary testing,
it was found that the size of the hamming balls increased too
rapidly for larger values of A. This made the analysis too
computationally expensive. The longer length was chosen
to allow for large subgraphs, given the small size of the al-
phabet. The high value of θ = 0.4 was chosen to discourage
localisation behaviour of the eigenvector without the pres-
ence of the hamming ball. To each graph was connected
a hamming ball of radius ρ. The values of ρ from the set
[0, 1, 2] were used. For each value of ρ, 100 networks were
generated. Diagrams of the networks are not shown as it was
found that the resulting networks were too large to allow for
these diagrams to be informative.

Figure 4b shows the relative inverse participation ratio
Yr (λ). Between ρ = 2 and ρ = 3 we see a sharp increase in
this value, representing a localisation transition.

Discussion
In this work, we set out to incorporate and build upon recent
results concerning the behaviour of the principal eigenvec-
tors, and associated eigenvalues, of the adjacency matrices
of networks in the context of the study of the dynamics of
polymorphic populations evolving asexually on neutral net-
works.

Much of the discussion surrounding neutral evolution has
functioned on the assumption that the population spreads
out over the network, gaining variation and exploring se-
quence space (Lauring and Andino, 2010). The popula-
tion will, further, “evolve toward regions denser in neutral
genotypes”(Aguirre et al., 2009). However, the behaviour
on networks with a heterogeneous structure can be substan-
tially different. In the presence of certain structural hetero-
geneities, the principal eigenvector of the adjacency matrix
of the network localises. This localisation of the principal
eigenvector leads to an exploration catastrophe as described
by Ancel et al. (2000), whereby the population becomes con-
centrated on a small region of the network. It is interest-
ing to note that the localisation transition described here is
dependent on the topology of the network and is indepen-
dent of the mutation rate. On the other hand, the localisa-
tion transition described by Ancel et al. (2000), along with
other localisation-delocalisation transitions studied in qua-
sispecies theory (Tejero et al., 2011; Summers and Litwin,
2006), are dependent on the mutation rate and are studied
in the context of a fixed fitness landscape. Nevertheless,
such an error catastrophe has important ramifications for the
study of populations evolving at high mutation rates.

Given that it is suspected that much of evolution occurs
on neutral networks (Nei, 2005) along with the importance



of mutational robustness to the survival of organisms and its
relationship with evolvability, understanding the impact of
the topology of neutral networks on the dynamics of neu-
tral evolution and the resulting robustness of organisms is of
great importance. This work has provided insight into these
issues in the case of polymorphic populations: large popu-
lations evolving at high mutation rate. The directed, neu-
tral, evolution of bio-molecules (Currin et al., 2015; Jäckel
and Hilvert, 2010) along with viruses overcoming immunity
through neutral evolution (van Nimwegen, 2006) fall within
this category. These results have potential applicability to
these problems. For instance, the neutral evolution of large
libraries of molecules (Kaltenbach and Tokuriki, 2014) will
be greatly aided by delocalization, whereas a virus’s attempt
to escape immunity might be thwarted if its population lo-
calizes on a hub.

Probably the largest limitation of the work presented here
is that all the studied networks were artificially generated
from network models. Future work will focus on the appli-
cability of these results to biological evolution. Progress has
already been made on the study of the neutral networks of
influenza, and this work is presented in the master’s thesis
of the first author (Shorten, 2017). The present focus is on
obtaining a high-resolution data-set of the sequences of an
influenza quasispecies evolving within a given host. Future
work will also investigate the transient behaviour of popula-
tions approaching their equilibrium distribution.

Conclusion
This paper investigated the manner in which neutral network
topology influences the resulting population distribution and
robustness during neutral evolution at high mutation rates
in large populations without recombination. In such cases,
the population distribution is given by the principal eigen-
vector of the adjacency matrix of the neutral network and,
similarly, the average mutational robustness of the individ-
uals in the population is given by the principal eigenvalue
(Van Nimwegen et al., 1999). Hence, we utilized, and built
upon, recent results concerning the behaviour of these val-
ues from studies concerning the spread of epidemics on net-
works (Goltsev et al., 2012) as well as more general work
(Martin et al., 2014).

For neutral networks with certain structural hetero-
geneities, it was found that the population could undergo
an exploration catastrophe, whereby it becomes localised on
a small number of nodes in the network. These results are
particularly relevant to various arguments concerning the re-
lationship between robustness and evolvability (Masel and
Trotter, 2010; Wagner, 2008), which make the assumption
that populations evolving at high mutation rate disperse over
their neutral networks.

These results are relevant to the directed evolution of bio-
molecules (Currin et al., 2015; Jäckel and Hilvert, 2010),
where they can be used to evolve more robust molecules as

well as facilitate the evolution of greater variety. Moreover,
they can also further our understanding of the factors that al-
low viruses to escape immunity along neutral networks (van
Nimwegen, 2006).
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